3,391 research outputs found

    The nature of the electro-catalytic response of mixed metal oxides: Pt- and Ru-doped SnO2 anodes

    Full text link
    "This is the peer reviewed version of the following article: The nature of the electro-catalytic response of mixed metal oxides: Pt- and Ru-doped SnO2 anodes, which has been published in final form at https://doi.org/10.1002/celc.201801632. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."[EN] The catalytic behavior of metal oxides for oxidative reactions is generally classified into active or non-active, depending on whether surface redox species participate or not. In the case of mixed metal oxides, however, this simplified scenario may be more complex. Non-active oxides containing electroactive metal species, like Pt- and/or Ru-doped SnO2 electrodes, are promising anode materials for the electrochemical treatment of waste-waters. This work analyzes the effect of Pt and Ru species on the nature of the electro-oxidative catalytic response of Ti/SnO2 anodes. For this purpose, the electro-oxidation of phenol and the competing oxygen evolution reaction (OER) in NaOH have been chosen as model reactions. The different electrodes and reactions were characterized by cyclic voltammetry, electro- chemical impedance spectroscopy, and Tafel measurements. The obtained results reveal that both Pt and Ru introduce solid-state redox processes and catalyze the OER and the phenol oxidation onto Ti/SnO2-based electrodes. Nevertheless, the dopants induce quite different active behaviors in the mixed oxides. Pt practically does not affect the OER mechanism, but enhances its kinetics, so its electrocatalytic activity is associated with a specific adsorption of hydroxyl anions or phenolate on Pt sites, without participation of the irreversible Pt/PtOx couple (i.e. a "non-redox-active" behavior). On the contrary, Ru species involve various and highly reversible redox processes that accelerate and modify the rate-determining step of the OER, and that actively mediate in the phenol oxidation.Financial support from the Spanish Ministerio de Economia y Competitividad and FEDER funds (MAT2016-76595-R, IJCI-201420012) is gratefully acknowledged.Berenguer Betrián, R.; Quijada, C.; Morallón, E. (2019). The nature of the electro-catalytic response of mixed metal oxides: Pt- and Ru-doped SnO2 anodes. ChemElectroChem. 6(4):1057-1068. https://doi.org/10.1002/celc.201801632S1057106864K. Rajeshwar J. G. Ibanez (Eds.) in Environmental Electrochemistry: Fundamentals and Applications in Pollution Abatement Academic Press Inc. San Diego 1997.Martínez-Huitle, C. A., & Ferro, S. (2006). Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes. Chem. Soc. Rev., 35(12), 1324-1340. doi:10.1039/b517632hBrillas, E., & Martínez-Huitle, C. A. (2015). Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review. Applied Catalysis B: Environmental, 166-167, 603-643. doi:10.1016/j.apcatb.2014.11.016Panizza, M., & Cerisola, G. (2009). Direct And Mediated Anodic Oxidation of Organic Pollutants. Chemical Reviews, 109(12), 6541-6569. doi:10.1021/cr9001319Comninellis, C. (1994). Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment. Electrochimica Acta, 39(11-12), 1857-1862. doi:10.1016/0013-4686(94)85175-1Martínez-Huitle, C. A., Ferro, S., & De Battisti, A. (2005). Electrochemical Incineration in the Presence of Halides. Electrochemical and Solid-State Letters, 8(11), D35. doi:10.1149/1.2042628Scialdone, O., Galia, A., Guarisco, C., Randazzo, S., & Filardo, G. (2008). Electrochemical incineration of oxalic acid at boron doped diamond anodes: Role of operative parameters. Electrochimica Acta, 53(5), 2095-2108. doi:10.1016/j.electacta.2007.09.007Scialdone, O., Randazzo, S., Galia, A., & Filardo, G. (2009). Electrochemical oxidation of organics at metal oxide electrodes: The incineration of oxalic acid at IrO2–Ta2O5 (DSA-O2) anode. Electrochimica Acta, 54(4), 1210-1217. doi:10.1016/j.electacta.2008.08.064Scialdone, O. (2009). Electrochemical oxidation of organic pollutants in water at metal oxide electrodes: A simple theoretical model including direct and indirect oxidation processes at the anodic surface. Electrochimica Acta, 54(26), 6140-6147. doi:10.1016/j.electacta.2009.05.066Kapałka, A., Lanova, B., Baltruschat, H., Fóti, G., & Comninellis, C. (2008). Electrochemically induced mineralization of organics by molecular oxygen on boron-doped diamond electrode. Electrochemistry Communications, 10(9), 1215-1218. doi:10.1016/j.elecom.2008.06.005Kapałka, A., Fóti, G., & Comninellis, C. (2007). Kinetic modelling of the electrochemical mineralization of organic pollutants for wastewater treatment. Journal of Applied Electrochemistry, 38(1), 7-16. doi:10.1007/s10800-007-9365-6Kapałka, A., Fóti, G., & Comninellis, C. (2009). The importance of electrode material in environmental electrochemistry. Electrochimica Acta, 54(7), 2018-2023. doi:10.1016/j.electacta.2008.06.045Kapałka, A., Baltruschat, H., & Comninellis, C. (2011). Electrochemical Oxidation of Organic Compounds Induced by Electro-Generated Free Hydroxyl Radicals on BDD Electrodes. Synthetic Diamond Films, 237-260. doi:10.1002/9781118062364.ch10Martínez-Huitle, C. A., Quiroz, M. A., Comninellis, C., Ferro, S., & Battisti, A. D. (2004). Electrochemical incineration of chloranilic acid using Ti/IrO2, Pb/PbO2 and Si/BDD electrodes. Electrochimica Acta, 50(4), 949-956. doi:10.1016/j.electacta.2004.07.035Scialdone, O., Randazzo, S., Galia, A., & Silvestri, G. (2009). Electrochemical oxidation of organics in water: Role of operative parameters in the absence and in the presence of NaCl. Water Research, 43(8), 2260-2272. doi:10.1016/j.watres.2009.02.014S. Trasatti (Ed.) inStudies in Physical and Theoretical Chemistry. Vol. 11. Electrodes of Conductive Metallic oxides. Part. A-B Elsevier Science Publishers Amsterdam 1980/1981.Trasatti, S. (2000). Electrocatalysis: understanding the success of DSA®. Electrochimica Acta, 45(15-16), 2377-2385. doi:10.1016/s0013-4686(00)00338-8Ch. Comninellis G. ChenPanizza, M., Michaud, P. A., Cerisola, G., & Comninellis, C. (2001). Anodic oxidation of 2-naphthol at boron-doped diamond electrodes. Journal of Electroanalytical Chemistry, 507(1-2), 206-214. doi:10.1016/s0022-0728(01)00398-9Iniesta, J. (2001). Electrochemical oxidation of phenol at boron-doped diamond electrode. Electrochimica Acta, 46(23), 3573-3578. doi:10.1016/s0013-4686(01)00630-2Scialdone, O., Guarisco, C., & Galia, A. (2011). Oxidation of organics in water in microfluidic electrochemical reactors: Theoretical model and experiments. Electrochimica Acta, 58, 463-473. doi:10.1016/j.electacta.2011.09.073Polcaro, A. M., Mascia, M., Palmas, S., & Vacca, A. (2002). Kinetic Study on the Removal of Organic Pollutants by an Electrochemical Oxidation Process. Industrial & Engineering Chemistry Research, 41(12), 2874-2881. doi:10.1021/ie010669uSubba Rao, A. N., & Venkatarangaiah, V. T. (2013). Metal oxide-coated anodes in wastewater treatment. Environmental Science and Pollution Research, 21(5), 3197-3217. doi:10.1007/s11356-013-2313-6Wu, W., Huang, Z.-H., & Lim, T.-T. (2014). Recent development of mixed metal oxide anodes for electrochemical oxidation of organic pollutants in water. Applied Catalysis A: General, 480, 58-78. doi:10.1016/j.apcata.2014.04.035Martínez-Huitle, C. A., Rodrigo, M. A., Sirés, I., & Scialdone, O. (2015). Single and Coupled Electrochemical Processes and Reactors for the Abatement of Organic Water Pollutants: A Critical Review. Chemical Reviews, 115(24), 13362-13407. doi:10.1021/acs.chemrev.5b00361Moreira, F. C., Boaventura, R. A. R., Brillas, E., & Vilar, V. J. P. (2017). Electrochemical advanced oxidation processes: A review on their application to synthetic and real wastewaters. Applied Catalysis B: Environmental, 202, 217-261. doi:10.1016/j.apcatb.2016.08.037Berenguer, R., Valdés-Solís, T., Fuertes, A. B., Quijada, C., & Morallón, E. (2008). Cyanide and Phenol Oxidation on Nanostructured Co[sub 3]O[sub 4] Electrodes Prepared by Different Methods. Journal of The Electrochemical Society, 155(7), K110. doi:10.1149/1.2917210Ch. Comninellis Electrochemical treatment of waste water containing phenol Trans. IChemE1992 70 219–224.Stucki, S., K�tz, R., Carcer, B., & Suter, W. (1991). Electrochemical waste water treatment using high overvoltage anodes Part II: Anode performance and applications. Journal of Applied Electrochemistry, 21(2), 99-104. doi:10.1007/bf01464288Comninellis, C., & Pulgarin, C. (1993). Electrochemical oxidation of phenol for wastewater treatment using SnO2, anodes. Journal of Applied Electrochemistry, 23(2). doi:10.1007/bf00246946Rodgers, J. D., Jedral, W., & Bunce, N. J. (1999). Electrochemical Oxidation of Chlorinated Phenols. Environmental Science & Technology, 33(9), 1453-1457. doi:10.1021/es9808189Montilla, F., Morallón, E., & Vázquez, J. L. (2005). Evaluation of the Electrocatalytic Activity of Antimony-Doped Tin Dioxide Anodes toward the Oxidation of Phenol in Aqueous Solutions. Journal of The Electrochemical Society, 152(10), B421. doi:10.1149/1.2013047CORREA-LOZANO, B., COMNINELLIS, C., & BATTISTI, A. D. (1997). Journal of Applied Electrochemistry, 27(8), 970-974. doi:10.1023/a:1018414005000VICENT, F., MORALLO´N, E., QUIJADA, C., L.VA´ZQUEZ, J., ALDAZ, A., & CASES, F. (1998). Journal of Applied Electrochemistry, 28(6), 607-612. doi:10.1023/a:1003250118996Forti, J. C., Olivi, P., & de Andrade, A. R. (2001). Characterisation of DSA®-type coatings with nominal composition Ti/Ru0.3Ti(0.7−x)SnxO2 prepared via a polymeric precursor. Electrochimica Acta, 47(6), 913-920. doi:10.1016/s0013-4686(01)00791-5Montilla, F., Morallón, E., De Battisti, A., & Vázquez, J. L. (2004). Preparation and Characterization of Antimony-Doped Tin Dioxide Electrodes. Part 1. Electrochemical Characterization. The Journal of Physical Chemistry B, 108(16), 5036-5043. doi:10.1021/jp037480bBerenguer, R., La Rosa-Toro, A., Quijada, C., & Morallón, E. (2008). Origin of the Deactivation of Spinel CuxCo3−xO4/Ti Anodes Prepared by Thermal Decomposition. The Journal of Physical Chemistry C, 112(43), 16945-16952. doi:10.1021/jp804403xAdams, B., Tian, M., & Chen, A. (2009). Design and electrochemical study of SnO2-based mixed oxide electrodes. Electrochimica Acta, 54(5), 1491-1498. doi:10.1016/j.electacta.2008.09.034Berenguer, R., Sieben, J. M., Quijada, C., & Morallón, E. (2014). Pt- and Ru-Doped SnO2–Sb Anodes with High Stability in Alkaline Medium. ACS Applied Materials & Interfaces, 6(24), 22778-22789. doi:10.1021/am506958kBerenguer, R., Sieben, J. M., Quijada, C., & Morallón, E. (2016). Electrocatalytic degradation of phenol on Pt- and Ru-doped Ti/SnO 2 -Sb anodes in an alkaline medium. Applied Catalysis B: Environmental, 199, 394-404. doi:10.1016/j.apcatb.2016.06.038Berenguer, R., Quijada, C., & Morallón, E. (2009). Electrochemical characterization of SnO2 electrodes doped with Ru and Pt. Electrochimica Acta, 54(22), 5230-5238. doi:10.1016/j.electacta.2009.04.016A. J. Bard L. R. Faulkner (Eds.) inElectrochemical Methods John Wiley& Sons New York 1980.Montilla, F., Morallón, E., De Battisti, A., Benedetti, A., Yamashita, H., & Vázquez, J. L. (2004). Preparation and Characterization of Antimony-Doped Tin Dioxide Electrodes. Part 2. XRD and EXAFS Characterization. The Journal of Physical Chemistry B, 108(16), 5044-5050. doi:10.1021/jp0374814He, Y., Li, H., Zou, X., Bai, N., Cao, Y., Cao, Y., … Li, G.-D. (2017). Platinum dioxide activated porous SnO2 microspheres for the detection of trace formaldehyde at low operating temperature. Sensors and Actuators B: Chemical, 244, 475-481. doi:10.1016/j.snb.2017.01.014Santos, A. L., Profeti, D., & Olivi, P. (2005). Electrooxidation of methanol on Pt microparticles dispersed on SnO2 thin films. Electrochimica Acta, 50(13), 2615-2621. doi:10.1016/j.electacta.2004.11.006Doyle, R. L., & Lyons, M. E. G. (2016). The Oxygen Evolution Reaction: Mechanistic Concepts and Catalyst Design. Photoelectrochemical Solar Fuel Production, 41-104. doi:10.1007/978-3-319-29641-8_2Lyons, M. E. G., & Floquet, S. (2011). Mechanism of oxygen reactions at porous oxide electrodes. Part 2—Oxygen evolution at RuO2, IrO2 and IrxRu1−xO2 electrodes in aqueous acid and alkaline solution. Physical Chemistry Chemical Physics, 13(12), 5314. doi:10.1039/c0cp02875dRochefort, D., Dabo, P., Guay, D., & Sherwood, P. M. A. (2003). XPS investigations of thermally prepared RuO2 electrodes in reductive conditions. Electrochimica Acta, 48(28), 4245-4252. doi:10.1016/s0013-4686(03)00611-xGaudet, J., Tavares, A. C., Trasatti, S., & Guay, D. (2005). Physicochemical Characterization of Mixed RuO2−SnO2Solid Solutions. Chemistry of Materials, 17(6), 1570-1579. doi:10.1021/cm048129lConway, B. E. (1999). Electrochemical Supercapacitors. doi:10.1007/978-1-4757-3058-6Ribeiro, J., & de Andrade, A. R. (2006). Investigation of the electrical properties, charging process, and passivation of RuO2–Ta2O5 oxide films. Journal of Electroanalytical Chemistry, 592(2), 153-162. doi:10.1016/j.jelechem.2006.05.004Lodi, G., Zucchini, G., De Battisti, A., Sivieri, E., & Trasatti, S. (1978). On some debated aspects of the behaviour of RuO2 film electrodes. Materials Chemistry, 3(3), 179-188. doi:10.1016/0390-6035(78)90023-8McEvoy, A. J., & Gissler, W. (1982). A ruthenium dioxide‐semiconductor Schottky barrier photovoltaic device. Journal of Applied Physics, 53(2), 1251-1252. doi:10.1063/1.330541Wu, N. L., Hwang, J. Y., Liu, P. Y., Han, C. Y., Kuo, S. L., Liao, K. H., … Wang, S. Y. (2001). Synthesis and Characterization of Sb-Doped SnO[sub 2] Xerogel Electrochemical Capacitor. Journal of The Electrochemical Society, 148(6), A550. doi:10.1149/1.1368099Sugimoto, W., Kizaki, T., Yokoshima, K., Murakami, Y., & Takasu, Y. (2004). Evaluation of the pseudocapacitance in RuO2 with a RuO2/GC thin film electrode. Electrochimica Acta, 49(2), 313-320. doi:10.1016/j.electacta.2003.08.013Ardizzone, S., Fregonara, G., & Trasatti, S. (1990). «Inner» and «outer» active surface of RuO2 electrodes. Electrochimica Acta, 35(1), 263-267. doi:10.1016/0013-4686(90)85068-xIwakura, C., & Sakamoto, K. (1985). Effect of Active Layer Composition on the Service Life of  ( SnO2   and RuO2 )  ‐ Coated Ti Electrodes in Sulfuric Acid Solution. Journal of The Electrochemical Society, 132(10), 2420-2423. doi:10.1149/1.2113590J. O. M. Bockris A. K. N. Reddy M. E. Gamboa-AldecoDoyle, R. L., & Lyons, M. E. G. (2013). An electrochemical impedance study of the oxygen evolution reaction at hydrous iron oxide in base. Physical Chemistry Chemical Physics, 15(14), 5224. doi:10.1039/c3cp43464hMatsumoto, Y., & Sato, E. (1986). Electrocatalytic properties of transition metal oxides for oxygen evolution reaction. Materials Chemistry and Physics, 14(5), 397-426. doi:10.1016/0254-0584(86)90045-3Gattrell, M., & Kirk, D. W. (1993). A Study of the Oxidation of Phenol at Platinum and Preoxidized Platinum Surfaces. Journal of The Electrochemical Society, 140(6), 1534-1540. doi:10.1149/1.2221598Lapuente, R., Cases, F., Garcés, P., Morallón, E., & Vázquez, J. . (1998). A voltammetric and FTIR–ATR study of the electropolymerization of phenol on platinum electrodes in carbonate medium. Journal of Electroanalytical Chemistry, 451(1-2), 163-171. doi:10.1016/s0022-0728(98)00098-9Lapuente, R., Quijada, C., Huerta, F., Cases, F., & Vázquez, J. L. (2003). X-Ray Photoelectron Spectroscopy Study of the Composition of Polyphenol Films Formed on Pt by Electropolymerisation of Phenol in the Presence of Sulphide in Carbonate Medium. Polymer Journal, 35(12), 911-919. doi:10.1295/polymj.35.911Panić, V. V., Dekanski, A. B., Vidaković, T. R., Mišković-Stanković, V. B., Javanović, B. Ž., & Nikolić, B. Ž. (2004). Oxidation of phenol on RuO2–TiO2/Ti anodes. Journal of Solid State Electrochemistry, 9(1), 43-54. doi:10.1007/s10008-004-0559-0Feng, Y. ., & Li, X. . (2003). Electro-catalytic oxidation of phenol on several metal-oxide electrodes in aqueous solution. Water Research, 37(10), 2399-2407. doi:10.1016/s0043-1354(03)00026-5Li, X., Cui, Y., Feng, Y., Xie, Z., & Gu, J.-D. (2005). Reaction pathways and mechanisms of the electrochemical degradation of phenol on different electrodes. Water Research, 39(10), 1972-1981. doi:10.1016/j.watres.2005.02.021Zanta, C. L. P. S., de Andrade, A. R., & Boodts, J. F. C. (2000). Journal of Applied Electrochemistry, 30(4), 467-474. doi:10.1023/a:1003942411733Cestarolli, D. T., & de Andrade, A. R. (2007). Electrochemical Oxidation of Phenol at Ti∕Ru[sub 0.3]Pb[sub (0.7−x)]Ti[sub x]O[sub y] Electrodes in Aqueous Media. Journal of The Electrochemical Society, 154(2), E25. doi:10.1149/1.2405722Wels, B., & Johnson, D. C. (1990). Electrocatalysis of Anodic Oxygen Transfer Reactions: Oxidation of Cyanide at Electrodeposited Copper Oxide Electrodes in Alkaline Media. Journal of The Electrochemical Society, 137(9), 2785-2791. doi:10.1149/1.2087072Berenguer, R., La Rosa-Toro, A., Quijada, C., & Morallón, E. (2017). Electrocatalytic oxidation of cyanide on copper-doped cobalt oxide electrodes. Applied Catalysis B: Environmental, 207, 286-296. doi:10.1016/j.apcatb.2017.01.078Berenguer, R., Quijada, C., La Rosa-Toro, A., & Morallón, E. (2019). Electro-oxidation of cyanide on active and non-active anodes: Designing the electrocatalytic response of cobalt spinels. Separation and Purification Technology, 208, 42-50. doi:10.1016/j.seppur.2018.05.02

    Las gramáticas dialogadas del español en el Siglo de Oro: el caso de Ambrosio de Salazar

    Get PDF
    El Espexo general de la gramática en diálogos –manual de español publicado en Francia en 1614– se ha estudiado habitualmente bajo la óptica de la historiografía lingüística atendiendo a su aportación doctrinal dentro de la tradición gramaticográfica española. De forma menos sistemática se ha aludido a sus planteamientos metodológicos, casi siempre a través de valoraciones negativas, que ya surgían incluso desde el momento de aparición del manual en el ambiente de enseñanza del español del país vecino (Oudin, Marcos Fernández)

    A preliminary checklist of fungi at the Boston Harbor Islands

    Get PDF
    Between December 2012 and May 2017, we conducted a fungal inventory at the Boston Harbor Islands National Recreation Area (BHI) in Massachusetts. We extensively sampled 4 sites (Grape Island, Peddocks Island, Thompson Island, and World's End peninsula) and occasionally visited 4 others for sampling (Calf Island, Great Brewster Island, Slate Island, and Webb Memorial State Park). We made over 900 collections, of which 313 have been identified. The survey yielded 172 species in 123 genera, 62 families, 24 orders, 11 classes, and 2 phyla. We report 4 species as new, but not formally described, in the genera Orbilia, Resupinatus, and Xylaria. Another collection in the genus Lactarius may be new to science, but further morphological and molecular work is needed to confirm this conclusion. Additionally, Orbilia aprilis is a new report for North America, Proliferodiscus earoleucus represents only the second report for the US, and Chrysosporium sulfureum, a common fungus of some cheeses, was discovered on woodlice (Crustacea: Malacostraca: Isopoda: Oniscidea). We discuss our findings in the light of DNA-based identifications using the ITS ribosomal DNA region, including the advantages and disadvantages of this approach, and stress the need for biodiversity studies in urbanized areas during all seasons

    Determination of pulsation periods and other parameters of 2875 stars classified as MIRA in the All Sky Automated Survey (ASAS)

    Full text link
    We have developed an interactive PYTHON code and derived crucial ephemeris data of 99.4% of all stars classified as 'Mira' in the ASAS data base, referring to pulsation periods, mean maximum magnitudes and, whenever possible, the amplitudes among others. We present a statistical comparison between our results and those given by the AAVSO International Variable Star Index (VSX), as well as those determined with the machine learning automatic procedure of Richards et al. 2012. Our periods are in good agreement with those of the VSX in more than 95% of the stars. However, when comparing our periods with those of Richards et al, the coincidence rate is only 76% and most of the remaining cases refer to aliases. We conclude that automatic codes require still more refinements in order to provide reliable period values. Period distributions of the target stars show three local maxima around 215, 275 and 330 d, apparently of universal validity, their relative strength seems to depend on galactic longitude. Our visual amplitude distribution turns out to be bimodal, however 1/3 of the targets have rather small amplitudes (A << 2.5m^{m}) and could refer to semi-regular variables (SR). We estimate that about 20% of our targets belong to the SR class. We also provide a list of 63 candidates for period variations and a sample of 35 multiperiodic stars which seem to confirm the universal validity of typical sequences in the double period and in the Petersen diagramsComment: 14 pages, 14 figures, and 8 tables. Accepted to The Astrophysical Journal Supplement Series, September 201

    Electrocatalytic Oxidation of Cyanide on Copper-doped Cobalt Oxide Electrodes

    Get PDF
    [EN] Copper and copper oxides are well-known excellent catalysts in several chemical processes, but their low mechanical and electrochemical stability restrict their direct utilization as electrodes in electrolytic processes. In this work, the incorporation of copper into cobalt oxide (CuxCo3-xO4) is presented as an excellent approach to obtain highly active and robust copper-based electrocatalysts. Particularly, the electrocatalytic performance of Ti-supported CuxCo3-xO4 electrodes (with 0 <= x <= 1.5) has been studied for the oxidation' of cyanide in alkaline media. Cyclic voltammetry and electrolysis runs show an outstanding effect of Cu on the activity, efficiency and kinetics of spinel CuxCo3-xO4 electrodes for CN(-)electro-oxidation. Despite being active oxides with high activity towards water oxidation, copper saturated (x=1.0) and oversaturated (x=1.5) spinels exhibit unprecedented 100% current efficiencies for the electro-oxidation of CN- in aqueous electrolyte. In situ surface enhanced Raman spectroscopy (SERS) reveals the specific adsorption of CN- ions on surface Cu species to be involved in the electrocatalytic oxidation mechanism. This electrocatalytic activity has been attributed to surface Cu(II) in the spinel lattice. Furthermore, the CuxCo3-xO4 electrodes also display high electrochemical stability. Therefore, they are considered excellent candidates for the sustainable electrochemical elimination of highly toxic cyanides.Financial support from the Spanish Ministerio de Economia y Competitividad and FEDER funds (MAT2016-76595-R, IJCI-2014-20012) and from the Generalitat Valenciana (PROMETEO2013/038) is gratefully acknowledged.Berenguer, R.; La Rosa-Toro, A.; Quijada, C.; Morallon, E. (2017). Electrocatalytic Oxidation of Cyanide on Copper-doped Cobalt Oxide Electrodes. Applied Catalysis B Environmental. 207:286-296. https://doi.org/10.1016/j.apcatb.2017.01.078S28629620

    Dynamic screening of a localized hole during photoemission from a metal cluster

    Get PDF
    Recent advances in attosecond spectroscopy techniques have fueled the interest in the theoretical description of electronic processes taking place in the subfemtosecond time scale. Here we study the coupled dynamic screening of a localized hole and a photoelectron emitted from a metal cluster using a semi-classical model. Electron density dynamics in the cluster is calculated with Time-Dependent Density Functional Theory and the motion of the photoemitted electron is described classically. We show that the dynamic screening of the hole by the cluster electrons affects the motion of the photoemitted electron. At the very beginning of its trajectory, the photoemitted electron interacts with the cluster electrons that pile up to screen the hole. Within our model, this gives rise to a significant reduction of the energy lost by the photoelectron. Thus, this is a velocity dependent effect that should be accounted for when calculating the average losses suffered by photoemitted electrons in metals.Comment: 15 pages, 5 figure

    Molecular Dynamics Simulation of Solvent-Polymer Interdiffusion. I. Fickian diffusion

    Full text link
    The interdiffusion of a solvent into a polymer melt has been studied using large scale molecular dynamics and Monte Carlo simulation techniques. The solvent concentration profile and weight gain by the polymer have been measured as a function of time. The weight gain is found to scale as t^{1/2}, which is expected for Fickian type of diffusion. The concentration profiles are fit very well assuming Fick's second law with a constant diffusivity. The diffusivity found from fitting Fick's second law is found to be independent of time and equal to the self diffusion constant in the dilute solvent limit. We separately calculated the diffusivity as a function of concentration using the Darken equation and found that the diffusivity is essentially constant for the concentration range relevant for interdiffusion.Comment: 17 pages and 7 figure

    Physico-Chemical and Chromatic Characterization of Malvidin 3-Glucoside-vinylcatechol and Malvidin 3-Glucoside-vinylguaiacol Wine Pigments

    Get PDF
    [EN] The physicochemical and chromatic features of malvidin 3-glucoside-vinylcatechol (PA1) and malvidin 3-glucoside-vinylguaiacol (PA2) adducts were investigated. Important differences between both pigments were observed. In the investigated pH range (2.0−4.5), our results suggest that PA1 could be considered as a noncovalent dimer of two pyranoflavylium ions (AH)2 which undergo a hydration reaction in two successive steps, with no proton transfer. In contrast, only proton transfer equilibrium between the pyranoflavylium ion and the quinonoid bases was observed for PA2. The hydration and acidity thermodynamic constants of both pyranoanathocyanins were determined by UV−vis spectroscopy. Pigment PA1 was shown to be less sensitive to bisulfite addition than to water addition, and PA2 seems to be largely insensitive to both water and bisulfite additions. The binding constants for the interaction between the pigments and (+)-catechin in aqueous solution and the changes in the CIELAB parameters that it provoked were also determined. The huge increase in the absorption of the pyranoflavylium ion of PA2 when it binds catechin has no equivalent for anthocyanins and nicely outlines the potential of pyranoanthocyanins in the expression of natural colors
    corecore